## Tentamen Metrische Ruimten 14 april 2009, 09:00 - 12:00 uur, 5111.0022

You can answer the exam in Dutch or English.

- 1. (a) Consider the topological space H which is the subset [0,1) of  $\mathbb{R}$  with the subspace topology. Find the closure of the following sets and whether they are open in H, closed in H, compact, and complete.
  - i. [0, 1/2],
  - ii. [0, 1/2),
  - iii. (1/2, 1),
  - iv. [1/2, 1).
  - (b) Consider the map  $p: \mathbb{R} \to [0,1)$  defined by

$$p(x) = x - [x],$$

where [x] is the integer part of x, and consider the topological space Q which is the set [0,1) with the topology  $\tau$  defined by

$$\tau = \{U \subset [0,1): p^{-1}(U) \text{ is open in } \mathbb{R}\}.$$

Show that H in (a) and Q are not topologically equivalent.

2. Consider the function  $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$  defined by

$$d((x_1,y_1),(x_2,y_2)) = \begin{cases} |y_1 - y_2|, & \text{if } x_1 = x_2, \\ |y_1| + |x_1 - x_2| + |y_2|, & \text{if } x_1 \neq x_2. \end{cases}$$

Show that d is a metric on  $\mathbb{R}^2$ . Sketch the open balls  $B_1((2,0))$ ,  $B_1((1,2))$ , and  $B_2((1,1))$ .

3. Consider the sequence  $f_n:[0,1]\to\mathbb{R}$  of uniformly continuous functions that converges to a function  $f:[0,1]\to\mathbb{R}$  with respect to the metric  $d_\infty$  given by

$$d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Show that f is uniformly continuous.

4. Let M be a metric space and H a subset of M. If  $f: M \to \mathbb{R}$  and  $g: M \to \mathbb{R}$  are continuous functions such that f(x) = g(x) for all  $x \in H$ , show that f(x) = g(x) for all  $x \in Cl(H)$ .